

Integrated Scheduling and Dynamic Optimization of Batch Processes

Yisu Nie and Lorenz T. Biegler

Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University

John M. Wassick

The Dow Chemical Company

Presentation Outline

- Introduction
- Motivating example
- Integrated formulation
- Case study
- Conclusions

Introduction

Batch chemical process

Long History Before the Industry Revolution Wide Practice

Pharmaceutical industry Specialty chemicals Polymer processes

Complex Characterization

Flexible unit connection Inherent time-varying dynamics

Process Scheduling

Time Representation

Discrete-time Continuous-time

Process Sequencing

Operational philosophies Changeovers Order fullfillment

Resource Handling

Materials Equipment Operators

Operations Optimization

Dynamic Modeling

Data-driven model First-principle model

Problem Formulation

Direct formulation Pontryagin's Maximum Principle Hamiltonian-Jacobi-Bellman optimality

Numerical Solution

Control Vector Parametrization Simultaneous methods

These two problems are nested in nature An integrated decision-making approach merits attention

Introduction

 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ Differential Algebraic Equations How do we model dynamics? $\frac{dc_A(t)}{dt} = -u(t)c_A^2(t)$ First-principle model $\frac{dc_B(t)}{dt} = -\frac{dc_A(t)}{dt} - \frac{dc_C(t)}{dt}$ Reaction kinetics Mass balance $\frac{dc_C(t)}{dt} = \beta u^2(t)c_B(t)$ Reactor $F = b \cdot C_p \int_0^{t_f} u(t) dt$ • Energy cost Variables $R_i^p = b \cdot c_i(t_f) \qquad i = B, C$ Material production batch size bconstituent concentration cscaled temperature u Material consumption $R^c_A = b \cdot c_A(0)$ ttime terminal time t_f unit energy price C_P Material purity $\phi = c_B(t_f)$ model parameter β

What advantages do dynamic optimization offer?

- Improvement on economic performance of individual operations
- A door to optimal production schedule of overall process

Recipe

Flowsheet of a typical batch process

- 1) React feed material in the batch reactor for 1 hour at constant temperature 385 K
- 2) Remove the waste component generated by side reaction in the filter for 2 hours
- 3) Purify the intermediate in the distillation column for 2 hours with reflux ratio = 3

Motivating Example

Example	Profit	$F_{reactor}$	F_{filter}	F_{column}	Prod.	Feed cons.	Purity
Recipe-based	871	180	220	236	15.0	20	0.98
Integrated	983	178	213	212	15.5	20	0.98

Network-based representation of batch processes

- State Task Network (STN) (E. Kondili et al. 93)

State	Feed, intermediate and final products
Task	Processing operations which transform one or more input
	states to one or more output states

Resource Task Network (RTN) (C.C. Pantelides 94)

Resource	Materials, energy and equipment
Task	Processing steps, cleaning, transportation and other
	operations

Is there an alternative perspective?

Mathematical formulation

Unit-specific continuous time representation

Assignment constraints

$$\sum_{s \in \mathcal{S}_j} w_{j,s,n} \leqslant 1 \qquad \forall j \in \mathcal{J}, n \in \mathcal{N}$$

Material balance

$$\underbrace{\widetilde{E}_{r,n}}_{r,n} = \underbrace{\widetilde{E}_{r,n-1}}_{r,n-1} + \underbrace{\sum_{j \in \mathcal{J}_r^p} R_{j,r,n-1}^p}_{r,n-1} + \underbrace{\sum_{j \in \mathcal{J}_r^c} R_{j,r,n}^c}_{r,n}$$

Capacity constraints

$$\sum_{s \in \mathcal{S}_j} w_{j,s,n} B_j^{min} \leqslant b_{j,n} \leqslant \sum_{s \in \mathcal{S}_j} w_{j,s,n} B_j^{max} \qquad \forall j \in \mathcal{J}, n \in \mathcal{N}$$

$$E_r^{min} \leqslant E_{r,n} \leqslant E_r^{max} \qquad \forall r \in \mathcal{R}, n \in \mathcal{N}$$

Indices	Sets	
j	${\mathcal J}$	equipment
s	${\mathcal S}$	operating states
r	${\cal R}$	materials
n	\mathcal{N}	event points

Va	ris	٩h	les	2

 $\forall r \in \mathcal{R}, n \in \mathcal{N}$

w	task assigning
E	excess material
b	batch size
\mathbb{R}^p	material production
R^c	material consumption

CENTER		Supersript	ūS
 Sequencing cor 	nstraints	$p \atop c$	prodction consumption
Operations in the satisfies $T_{j,n+1} \ge T$ Operations in different downstream start $T_{j',n'} \ge$ • Material quality r Mixture composition am $\eta_{r,c,n} = (E_{r,n-1} \cdot \eta_{r,c,n})$	$ \begin{array}{l} \text{me unit} \\ T_{j,n} + Tp_{j,n} \forall j \in \mathcal{J}, n \in \mathcal{N} \\ \text{nt units} \\ \underbrace{upstream \ end}_{T_{j,n} + Tp_{j,n}} - H(2 - \underbrace{\sum_{s \in \mathcal{S}_j, \mathcal{S}_r^p} w_{j,s,n}}_{s \in \mathcal{S}_j, \mathcal{S}_r^p} - \underbrace{\sum_{s' \in \mathcal{S}_{j'}, \mathcal{S}_r^c} w_{j'}}_{s' \in \mathcal{J}_r^p, j' \in \mathcal{J}_r^c, j \neq j', n, n' \in \mathcal{N}, n < n'} \\ expression \\ \underbrace{upstream \ end}_{p-1 + \sum_{j \in \mathcal{J}_r^p} R_{j,r,n-1}^p \cdot \phi_{j,r,c,n-1}} / (E_{r,n-1} + \sum_{j \in \mathcal{J}_r^p} R_{j,r,n-1}^p \cdot \phi_{j,r,c,n-1}} \\ \end{array} $	Indices j s c r n (s',n') Variable w $(s \in N \qquad T \\ T \\ T \\ P \\ H \\ \eta \\ \phi$ terial r $R_{j,r,n-1}^{p})$	Sets \mathcal{J} equipment \mathcal{S} operating states \mathcal{C} components \mathcal{R} materials \mathcal{N} event points event points es task assigning beginning time processing time scheduling horizon inventory concentration product concentration
$\mathcal{H}(\eta_{r,c,n},\overline{\eta}_{r,c,n}) \geqslant$	$0 \qquad \forall r \in \mathcal{R}, c \in \mathcal{C}_r, n \in \mathcal{N}$		

- Unit operation

Operating state Idle state $\begin{bmatrix} Y_{j,s,n} \\ \frac{dz_{j,n}(\tau)}{d\tau} = f_{j,s}(z_{j,n}(\tau), y_{j,n}(\tau), u_{j,n}(\tau))Tp_{j,n} \end{bmatrix}$ $\cdots \bigvee \begin{bmatrix} \neg \bigcup_{s \in S_j} Y_{j,s,n} \\ R_{j,r,n}^p = 0 \\ R_{j,r,n}^c = 0 \\ Tp_{j,n} = 0 \\ F_{j,n} = 0 \\ \sum_{s \in S_i} w_{j,s,n} = 0 \end{bmatrix} \quad \forall j \in \mathcal{J}, n \in \mathcal{N}$ $g_{j,s}(z_{j,n}(\tau), y_{j,n}(\tau), u_{j,n}(\tau)) = 0$ $z_{j,s}^{min} \leqslant z_{j,n}(\tau) \leqslant z_{j,s}^{max}$ Dynamic model $\begin{array}{l} y_{j,s}^{min} \leqslant y_{j,n}(\tau) \leqslant y_{j,s}^{max} \\ u_{j,s}^{min} \leqslant u_{j,n}(\tau) \leqslant u_{j,s}^{max} \end{array}$ $z_{j,n}(0) = \mathcal{Z}(b_{j,n}, \eta_{r,c,n}, w_{j,s,n})$ Initial condition $R_{j,r,n}^p = \mathcal{R}^p(z_{j,n}(\tau), y_{j,n}(\tau), w_{j,s,n})$ Production $R_{j,r,n}^c = \mathcal{R}^c(z_{j,n}(\tau), y_{j,n}(\tau), w_{j,s,n})$ Consumption $\phi_{j,r,c,n} = \phi(z_{j,n}(\tau), y_{j,n}(\tau), w_{j,s,n})$ Quality $F_{j,n} = \mathcal{F}(u_{j,n}(\tau), Tp_{j,n}, b_{j,n}, w_{j,s,n})$ Operating cost $w_{j,s,n} = 1$ differential state variable $s \in \mathcal{S}_i$ algebraic state variable control variable

normalized time

 τ

Overall formulation

- Mixed-Logic Dynamic Optimization (MLDO)
- s.t.
- Reformulation strategy
- Mixed-Integer Nonlinear Program (MINLP)

Simultaneous collocation

 $DAE \rightarrow Nonlinear$ algebraic equations

Big-M reformulation

Unit operation

Disjunctions \rightarrow Relaxed inequalities

A state equipment representation of a multiproduct batch process

Product recipes

$$\begin{aligned} FeedA \xrightarrow{Reaction1} IntABC \xrightarrow{Filtration1} IntAB \xrightarrow{Distillation} Rpro1 \xrightarrow{Package1} Product1 \\ FeedA \xrightarrow{Heating} HotA \xrightarrow{Reaction2} IntADE \xrightarrow{Filtration2} IntDE \xrightarrow{Distillation2} Rpro2 \xrightarrow{Package2} Product2 \\ FeedA \xrightarrow{Heating} HotA \xrightarrow{Reaction2} IntADE \xrightarrow{Filtration2} IntDE \xrightarrow{Package3} Product3 \end{aligned}$$

3/12/2011

Gantt-chart for the case study

Time horizon10 hrsEvent points6

3/12/2011

3/12/2011

Conclusions

Concluding remarks

- An integrated framework for short-term scheduling and dynamic real-time optimization of batch processes
- A reformulation strategy of mixed-logic dynamic optimization problems

Future developments

- Decomposition techniques for practical applications
- Implementation with fast dynamic models
- Nonconvex MINLP solution strategies
- Material transportation and storage, changeovers and order fulfillment in scheduling

köszönöm パーア děkuji mahalo 고맙습니다 thank you merci 讷讨讨 danke Euxapıotú شكر どうもありがとう gracias